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Abstract—Finger vein recognition technology plays an impor-
tant role in biometric recognition and has been successfully
applied in many fields. Because veins are buried beneath the skin
tissue, finger vein recognition has an unparalleled advantage,
which is not easily disturbed by external factors, and it has
excellent performance over other surface biometric features.
At the same time, the similarity between different fingers of
the same person is also worth exploring. Our state-of-the-art
survey summarizes 46 papers about deep learning for finger
vein image recognition from 2017 to 2022. To understand finger
vein recognition technology, our survey analyzes related works
according to different tasks of deep neural networks. Addi-
tionally, we point out the challenges and potential development
directions of finger vein recognition. All in all, our contribution
is providing a comprehensive sight for deep learning-based finger
vein recognition technology.

Index Terms—Finger vein recognition, Deep learning, Deep
neural network

I. INTRODUCTION

Biometric recognition aims to identify a person based on
physical features, such as fingerprint, voice, and iris [1].
With the growing requirement of digital security verification
systems, biometric recognition plays a vital role in many fields,
such as online payment, security, and other fields. The recent
popular trend of Deep Learning (DL) techniques is to employ
deep neural networks for various tasks. Compared to the
traditional secure identification process, biometric recognition
technology is more efficient due to its convenience and steady
security. Unfortunately, several representative biometric iden-
tification technologies are struck in some bottlenecks. For in-
stance, the fingerprint recognition rate is significantly affected
by the finger surface. Besides, the fingerprints inadvertently
left on things may lead to security risks. Voice recognition
usually requires a relatively quiet environment. The recogni-
tion rate of iris systems is outstanding, but it requires expensive

* Yimin Yin and Jinghua Zhang are corresponding authors.

sensors. Different from the above technologies, the Finger Vein
Recognition (FVR) is efficient and low-cost. The finger vein
is buried beneath the skin of the finger and is unique to each
individual. It can be recognized through the Near Infra-Red
(NIR) light [2], not the visible light which is vulnerable to
external factors. A comparison of these different biometric
recognition methods is shown in Tab. I.

TABLE I
SEVERAL BIOMETRIC RECOGNITION TECHNOLOGIES. N REPRESENTS

NON-CONTACT. C REPRESENTS CONTACT. RF REPRESENTS RADIO
FREQUENCY. NIR REPRESENTS NEAR-INFRARED.

Feature Security Obstruction Data Contact Cost

Face Normal Illumination Image N Low

Voice Normal Noise Audio N Low

Fingerprint Good Skin surface Image C Low

Iris Superior Glasses Image N High

Retina Good Glasses Image N Middle

Gait Normal Personal appearance
Filming angle

Video
Foot pressure
Velocity
Frequency

N Low

Signature Normal Randomness of writing
Image
Writing pressure
Writing posture

N Low

Finger vein Superior Few Image N Low

FVR, as an identification technology, is contingent upon
the utilization of finger vein images captured from the human
body. Since finger veins are concealed beneath the skin’s
surface, the acquisition of finger vein images typically involves
the use of an NIR sensor and a Charge-Coupled Device (CCD)
camera, as illustrated in Fig. 1. Upon a person placing their
finger onto the finger vein capture device, the NIR sensor
emits NIR light across the entire finger. Hemoglobin in the
blood exhibits a higher absorption rate of NIR light compared
to other biological tissues. Consequently, when illuminated978-1-6654-6837-4/22/$31.00 © 2022 IEEE



by the CCD camera, the vascular tissue within the finger
manifests a darker brightness compared to surrounding areas,
thereby enabling the capture of the finger vein image.

NIR light

CCD camera

Fig. 1. Image acquisition step obtained in FVR [3]. On the left is the
procedure for capturing the finger vein images utilizing a NIR sensor coupled
with a CCD camera. On the right is the resultant captured finger vein image.

Artificial intelligence technology, especially DL technology,
has developed rapidly in recent years, and DL has dominated
the recent research in the field of AI. The recent popular
trend in DL is to use deep neural networks to perform a
wide variety of tasks, including image processing. Compared
with transitional image processing methods, DL achieves
overwhelming performance in many tasks of computer vi-
sion, such as biometric recognition [1], biomedical image
analysis [4], and autonomous driving [5]. DL-based methods
are widely used in FVR tasks. The traditional FVR process
usually includes image capture, image data pre-processing,
feature extraction, and classification or other analysis tasks. In
the registration phase, images undergo initial pre-processing
operations to attain elevated quality and adhere to uniform
standards. Subsequently, vein features are extracted from the
processed finger vein images and securely stored in a ded-
icated database. During the matching stage, the input finger
vein image undergoes pre-processing in a manner consistent
with the registration process. Features are extracted from this
processed image and subsequently compared with the stored
data in the database to ascertain the correct affiliation. The
overall flow of FVR is depicted in Fig. 2.

The application of DL-based methods, especially Convolu-
tional Neural Networks (CNNs), greatly changes the manual
feature extraction process. The performance of conventional
machine learning approaches is significantly influenced by
feature engineering, in which the feature selection is based
on human domain knowledge. Nevertheless, CNNs can ex-
tract abstract but efficient features by supervised or semi-
supervised learning. The recognition process has been ex-
tremely simplified by DL-based methods. The advent of DL
injects fresh vigor into the field of FVR. Leveraging its
capability to autonomously learn feature extraction capability,
DL automatically extracts vein features from finger vein image
data. Subsequently, it employs the fully connected layer and
Softmax function to effectively execute the classification task.
With the extraordinary advantages pf DL, FVR no longer
requires human experts to manually design templates for

feature extraction, greatly saving the cost of recognition.
To illustrate the recent trend and potential direction of DL-

based FVR, we conduct this brief survey. We summarize
46 related papers from 2017 to 2022, which cover different
finger vein image analysis tasks, including classification, fea-
ture extraction, image enhancement, image segmentation, and
encryption. These papers are collected from popular academic
datasets or searching engines, which mainly include IEEE,
Springer, Elsevier, MDPI, ACM, World Scientific, and Google
Scholar. We use “finger vein image analysis” AND (“deep
learning” OR “neural network” OR “ANN” OR “CNN” OR
“GAN” OR “RNN” OR “LSTM”) as the search keywords. The
structure of this paper is as follows: In Sec. II, We present our
work related to this thesis, existing FVR surveys, and analyze
the intricacies and sophistication inherent in our research.
Sec. III summarize publicly available datasets commonly uti-
lized in FVR tasks, presenting detailed information about each
dataset and providing summary tables for clarity. In Sec. IV,
we introduce the deep neural network structure commonly
employed in FVR. In Sec. V, we organize the application of
DL to FVR into five tasks, offering a detailed exploration of
each task. This includes presenting representative approaches
and providing a comprehensive summarizing table for clarity.
In Sec. VI, the challenges and potential directions of FVR are
talked about. Finally, in Sec. VII, the conclusion and future
work of this paper is provided.

II. RELATED WORK

FVR, as an emerging biometric technology, garners
widespread attention. To underscore the uniqueness of our
contribution, this section presents a comparative analysis be-
tween our work and existing FVR-related surveys. [6]–[9]
provide a summary of the entire FVR process, encompassing
pre-processing, feature extraction, and matching. In terms of
critical algorithms for recognition, these papers concentrate on
traditional machine learning algorithms. [10], [11] exclusively
concentrate on feature extraction algorithms for FVR. These
works still emphasize the application of traditional machine
learning methods for feature extraction in FVR, neglecting
the significant contribution of DL to the field. [12] discusses
the application of CNNs in FVR, encompassing common
classification tasks and segmentation tasks. Nevertheless, the
discussion is constrained to specific network structures charac-
terized by shallow layers of structural components, and it lacks
research on the broader application of DL in FVR. In contrast
to preceding surveys, [13], [14] emphasizes focus on the ap-
plication of DL technology in FVR. [13] summarizes a limited
number of papers and lacks a comprehensive analysis of DL to
FVR from an algorithmic perspective. The discussion of [14]
spans various classical deep neural network architectures, yet
the summary of related FVR work lacks coherence and does
not systematically organize the task of applying DL to FVR.
We comprehensively and systematically summarize the various
application tasks of FVR using DL technology, detailing the
specific DL algorithms and elucidating related values in FVR.
Additionally, we offer an introduction to commonly utilized
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Fig. 2. The general workflow of biometric identity verification system on FVR. These essential steps encompass preprocessing, feature extraction, and
matching. During the enrollment phase, the extracted vein feature data is meticulously stored in a dedicated database. In the subsequent matching phase, the
feature data extracted from the input image is systematically compared with the information already stored in the database to facilitate identification.

correlation datasets and classical deep neural networks and
propose challenging potential directions for the advancement
of FVR.

III. DATASET

As DL relies on extensive data resources for automatic
learning, the dataset exerts a significant influence on the
ultimate performance of the DL model. The size of the dataset
directly determines the extent to which the trained DL model
possesses sufficient generalization ability. The quality of image
data also impacts the quality of features extracted by DL.
Through the investigation of relevant papers, the most widely
used datasets are FV-USM [15], HKPU [16], MMCBNU-
6000 [17], SDUMLA-HMT [18], UTFVP [19], and THU-
FVFDT. The base information of these datasets is provided
in Tab. III.

A. FV-USM

FV-USM contains 5904 images obtained from 123 volun-
teers, including 93 males and 40 females, ranging in age
from 20 to 50. The image collection process was divided
into two stages. The time gap between these two stages is
more than two weeks. Each person provided four fingers for
image capture. For each image collection stage, six images
were taken for each finger.

B. HKPU

HKPU contains 6264 images acquired from 156 subjects.
Half of these images are finger vein images, and the rest are
finger texture images. 93% of the subjects are younger than 30
years old. Images were acquired in two separate sessions with
a minimum interval of one month and a maximum interval of
six months. The average interval is 66.8 days. In each session,
every subject provided six samples. Each sample contains one
vein image and one finger texture image.

C. MMCBNU-6000

MMCBNU-6000 contains 6000 finger vein images collected
from 100 volunteers from 20 different countries. These vol-
unteers have different skin tones. Each subject provided their
index finger, middle finger, and ring finger, and each finger

was photographed ten times in an office environment (rather
than a dark environment).

D. SDUMLA-HMT

SDUMLA-HMT is a homologous multi-modal traits
database containing multiple biometric features such as face,
finger veins, gait, iris, and fingerprints. The finger vein part
of SDUMLA-HMT is the first publicly available finger vein
dataset, consisting of 3816 images. These images were col-
lected from each of the six fingers of 106 people, and six
images were collected from each finger.

E. UTFVP

UTFVP contains 1440 vascular pattern images obtained
from 60 volunteers. These images were captured in two
sessions. The average time gap between these sessions is 15
days. The vascular pattern of the six fingers from each subject
was taken two times.

F. THU-FVFDT

THU-FVFDT contains two versions. The first version,
THU-FVFDT1, contains 440 finger vein images from 220
subjects. The second version, THU-FVFDT2, contains 2440
finger vein and finger dorsal texture images from 610 subjects.
Both datasets were acquired with only one finger of each
subject, and their image acquisition process was finished in
two sessions.

IV. DEEP NEURAL NETWORKS

One [ivotal factor, integral to the significant breakthroughs
facilitated by DL technology across various domains, is the
utilization of deeply structured artificial neural networks,
especially CNNs. This is indispensable in conjunction with
extensive data-driven training processes. In contrast to the un-
complicated neuron structure of multi-layer perceptions, deep
neural networks have a substantial number of parameters. This
abundance of parameters enables them to extract high-level
semantic information from intricate images, thereby exhibit-
ing satisfactory generalization capabilities, particularly when
provided with ample data. Numerous network structures have
been devised in the field of DL, demonstrating performance



TABLE II
DETAIL OF PUBLIC DATASETS THAT ARE WIDELY USED IN FVR. NO. SUB. REPRESENTS THE NUMBER OF SUBJECTS. NO. IMG REPRESENTS THE TOTAL

NUMBER OF IMAGES ON THE DATASET. NO. F. REPRESENTS THE NUMBER OF FINGERS ENGAGED IN THE GESTURE WITHIN A SINGLE SUBJECT.

Dataset No. Sub. No. Img. No. F. Year Resolution Highlight URL

FV-USM 123 5904 4 2014 640× 480
Both; Middle, index; Two sessions ROI;
Finger vein and geometry [15]

HKPU 156 6264 2 2011 513× 256
Left; Middle, right; Finger vein and
finger surface texture [16]

MMCBNU-6000 100 6000 6 2013 640× 480
Both; Middle, index, right; The subject
are from 20 different countries. [17]

SDUMLA-HMT 106 3816 6 2010 320× 240
Both; Middle, index, right; The earliest
FVR public dataset [18]

UTFVP 60 1440 6 2013 672× 380
Both; Middle, index, right; Two sessions;
High resolution [19]

THU-FVFDT1 220 440 1 2014 200× 100
Left; Index; Two sessions; Finger vein
and finger dorsal texture [20]

THU-FVFDT2 610 2440 1 2014 200× 100
Left; Index; Two sessions; Finger vein
and finger dorsal texture; ROI [21]

across various tasks. Consequently, these structures have found
widespread adoption in many research studies within the realm
of computer vision. These classical deep neural networks are
more capable of achieving guaranteed performance results than
structures of their own design. There are also many deep
classical deep neural networks that are frequently used in
DL studies related to FVR, and they can accurately extract
finger vein features from finger vein images. In this section,
we introduce the classical deep neural network models that
are frequently employed in FVR to enhance the clarity of our
overview These are AlexNet [22], ResNet [23], and GAN [24].
The base characteristics of them are provided as follows.

A. AlexNet

AlexNet is a milestone in DL technology. Before it, the
development of neural network technology was at a low ebb
for many years. It is the first CNN to win the ILSVRC 2012.
After AlexNet, DL starts to be the mainstream technology in
many computer vision tasks [25]. The structure of AlexNet
contains five convolutional layers and three max-pooling lay-
ers. Additionally, it has three fully connected layers with 4096,
4096, and 1000 neurons, respectively. Its structure is provided
in Fig. 3. This network adopts ReLU as the activate function,
and Dropout and data augmentation are applied to prevent
over-fitting.
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Fig. 3. The structure of AlexNet

B. ResNet

ResNet is a deep neural network composed of several
residual units connected in series. As shown in Fig. 4, the
residual unit is made up of convolution layers and a shortcut
connection. The shortcut connection can effectively guarantee
the backpropagation of the gradient. Additionally, ResNet does
not contain any fully connected layer, except for the output
layer. This design dramatically reduces the number of network
parameters. Owing to the excellent structure of ResNet, it is
widely used as the backbone of many computer vision tasks.

convolutional ReLU convolutional + ReLU

Fig. 4. The residual unit structure.

C. GAN

GAN is commonly used in the finger vein image restoration
task. Its structure is shown in Fig. 5. Different from the
neural networks used for classification, GAN is composed
of the generator and discriminator. The task of the generator
is to generate fake samples that can fool the discriminator.
The discriminator aims to distinguish between true and false
samples. This generative adversarial process can be modeled in
the form of (1). V is the objective function of the entire model.
D is the discriminator, G is the generator, Ex∼Pdata

represents
the true data distribution, Ez∼Pz(z) represents random noise
distribution The entire formula reveals the GAN optimization
process. As shown in Fig. 5, the generator network receives the
noisy random input, while the discriminator network receives
the true sample. The output of the generator network is then
fed into the discriminator, which verifies if it is a genuine
sample.



 GeneratorNoise Fake sample

 Discriminator

True sample

Fig. 5. The basic theory of GAN

min
Gener

max
Discr

V (Gener,Discr) = Ex∼Pdata
[logDiscr(x)]+

Ez∼Pz(z)[log[1−Discr(Gener(z))]]
(1)

V. FINGER VEIN RECOGNITION BASED ON DEEP LEARNING

An overview of FVR based on DL is presented in this
section. According to the tasks of neural networks, the papers
are divided into five parts. The tasks that we thoroughly
discuss include classification, feature extraction, image en-
hancement, image segmentation, and encryption. Classification
stands as the central task in FVR, commonly employing an
end-to-end approach to execute identity-matching tasks with
the utilization of finger vein images. The feature extraction
task focuses on the quality of features extracted from finger
vein images through the utilization of DL methods. The quality
of finger vein images is often suboptimal due to variations in
imaging environments. Image enhancement techniques play
a crucial role in enhancing the quality of finger vein images,
thereby improving the overall recognition performances of DL
models. Image segmentation techniques have the capability
to isolate the pattern of vein lines from the original finger
vein images. Encryption is a pivotal technology that warrants
discussion in FVR because ensuring privacy and security is
imperative for any biometric recognition technology. In each
task, the representative methods are introduced. In the end, we
provide a summary table in Tab. III.

A. Classification

Classification is the main task in FVR. Compared with
traditional machine learning methods, DL technology shows
overwhelming performance in finger vein image classification
tasks. The flow of the classification task is shown in Fig. 6.

A substantial portion of research in this domain directly
employs CNNs for end-to-end FVR tasks, encompassing both
feature extraction and classification. [26]–[53] focus on the
finger vein classification task based on DL. Among them,
most papers adopt a similar CNN-based workflow to classify
the finger vein data. For example, ResNet is directly applied
to the image data to perform the classification task in [30].
Similar workflows are used in [32], [41], [46], [52]. It is worth
noting that [48] imports a joint attention module to improve
the contribution of vein patterns in feature extraction. The
attention mechanism plays a crucial role in enabling the model
to concentrate on key regions in the finger vein images, thereby
improving its capability to capture essential semantic features.
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Fig. 6. The flow of classification in FVR. In the registration phase, the feature
vectors extracted by the deep neural network are stored in the database. During
the log in phase, feature vectors extracted from the input images are compared
with the data in the database, completing the identification process.

This enhancement contributes to an overall improvement in the
classification performance of the model.

Besides CNNs, there are some papers adopting different
neural networks, such as [33] use Graph Neural Network
(GNN) to perform the classification. The intricate vein texture
can be described as a graph structure. Hence, GNN can
quickly distinguish different finger vein images from limited
data. Additionally, [35] uses bias filed correction and spatial
attention to optimize the CNN-based FVR task. The module
of [38] had better rotation invariance than normal CNN by
using the capsule network. Ordinary CNNs face challenges
in effectively learning spatial location relationships within
images. In contrast, capsule networks encode both spatial
information and the probability of an object’s presence as
capsule vectors. The magnitude of the vector represents the
probability of the feature’s presence, and the direction of
the vector represents the pose information of the feature.
The utilization of capsule networks in FVR is able to learn
effectively the positional relationships between various vein
lines in finger vein images. [40] proposes a novel approach
based on GAN. This method learns the joint distribution
of finger vein images and pattern maps, which enhance the
capacity for feature representation. [49] employs the triplet
loss with a hard triplet online mining approach to explore the
similarity between different fingers of a person. The objective
of the triplet loss function is to facilitate effective feature
learning by minimizing the distance between samples of the
same class in the embedding space, while simultaneously
maximizing the distance between samples of different classes.

B. Feature Extraction

Feature extraction stands out as one of the critical steps
in applying DL to FVR. Moreover, it represents a funda-
mental departure point where DL diverges significantly from
traditional machine learning methods. FVR methods based on
manual feature extraction necessitate dependence on expensive
manual template design. In contrast, DL excels by automat-
ically extracting features from finger vein images in a data-
driven manner. Several studies concentrate on enhancing the



model’s methodology for vein feature extraction, particularly
in the context of DL algorithms [54]–[60]. Some research [54],
[56], [58] adopt the analogous workflow, which usually uses
CNN structure to extract features, and then adopts a tradi-
tional machine learning algorithm to analyze these features.
Additionally, some studies use novel approaches to extract
features, such as [57] uses the Convolutional Auto-Encoder
(CAE) to learn the feature codes from finger vein images.
CAE is a network that employs a backpropagation algorithm
to minimize the discrepancy between its inputs and outputs.
The core algorithm of CAE involves compressing the inputs
into latent spatial representations. [59] proposes a capsule
neural network-based region of interest extraction approach
for finger veins, which can represent the relationship between
the part and the whole image. [55] designs a lightweight two-
channel network that has only three convolution layers to
extract image features with an acceptable computation cost,
and then a support vector machine is adopted to perform the
verification task. Networks with substantial parameter sizes
can indeed attain superior performance in FVR. However,
the drawback is that they often lead to prolonged inference
times, making them less practical for deployment in real-world
applications. Lightweight CNNs compress the network size
while ensuring satisfactory performance, enhancing inference
speed, and facilitating easier deployment of mobile terminals.
[60] proposes a deep fusion of electrocardiogram and finger
vein image data-based multi-modal biometric authentication
system. This method reaches a very high recognition accuracy.

C. Image Enhancement

Different finger vein image collection devices and user
habits often lead to noisy image data in real scenarios [54],
which seriously influences the performance of the DL model.
To obtain high-quality images sometimes, the original finger
vein images must be enhanced. Image enhancement of finger
vein images involves the removal of unwanted impurities from
the entire image, thereby emphasizing essential vein features
more prominently. The effect of image enhancement is shown
schematically in Fig.
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Fig. 7. The flow of image enhancement in FVR. The original finger vein
image undergoes enhancement to accentuate the visibility of vein lines.

[61]–[67] introduce the application of DL technology in
finger vein image enhancement. Among these papers, GAN
has a wide range of applications. For instance, GAN is used
to recover the missed vein patterns that are generated in
the image capture process owing to various factors in [63].
To recover the severely damaged finger vein images, [64]
proposes a modified GAN based on neighbors-based binary

patterns texture loss. [65] proposes a modified DeblurGAN
to increase identification performance by restoring motion-
blurred finger vein images to solve the problem of motion
blur in FVR. In addition to GANs, some other modules are
applied in image restoration for FVR. [61] proposes a finger
vein image denoising method based on the deep CNN, the
deconvolution sub-net recovers the original image based on the
features, and the modified linear unit extract finger vein texture
details. [62] uses a CAE to restore the venous networks of the
finger vein images, thereby effectively extracting features. [66]
proposes a new network architecture based on the pulse-
coupled neural network to improved the finger vein image
quality and increase the practicality of FVR.

D. Image Segmentation

Finger vein image segmentation is an important stage in
FVR technology. The quality of segmentation has a direct im-
pact on feature extraction and recognition. The effect of image
segmentation is schematically shown in Fig. [68] proposes a
finger vein segmentation algorithm based on LadderNet, it can
obtain abundant semantic information from vein images by
concatenating the feature channels of the expanding path and
contracting path in the network. Additionally, the parameters
of normal finger vein segmentation networks are overabundant,
which makes they are challenging to use in mobile terminals.
To overcome this problem, [69] proposes a lightweight real-
time segmentation network in FVR based on the embedded
terminal. The performance of this network is not inferior to
more complex networks and satisfies the needs of embedded
mobile terminals.
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Fig. 8. The flow of image enhancement in FVR. The image segmentation
technique directly isolates the vein line pattern from the captured finger vein
images.

E. Encryption

Since biometric information is irreplaceable and unique for
everyone, once the original biometric information is stolen, it
may cause irreversible loss. To protect the privacy of users
more effectively, encryption methods are used in FVR. This
technology masks the biometric information in the image by
encrypting the original image. Even if the finger vein image
is stolen, criminals cannot obtain valid information from it.
However, the biggest challenge of encryption is how to keep
the performance of the recognition system while protecting
biometric data. The overall of the encrypted FVR is shown in
Fig. 9.

To address this issue, [70] presented a novel FVR algorithm
by using a secure biometric template scheme based on DL
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(g) Template protectionFig. 9. The flow of encryption in FVR. In contrast to typical classification tasks, following the extraction of feature vectors by the deep neural network, these
vectors require additional processing using specialized encryption algorithms.

and random projections. This algorithm randomly generates
a secured template for the original biometric message by
random projections. In [31], a supervised hashing algorithm
is applied to finger vein templates stored in the database.
This implementation not only enhances the matching rate
but also incorporates encryption measures, thereby fortifying
the security of the stored templates. [71] proposes a deep
CAE structure to reduce the dimension of the feature space
and introduces the Biohashing algorithm to generate protected
templates based on the features that were extracted at the CAE.

VI. CHALLENGE AND POTENTIAL DIRECTION

Compared with traditional biometric technology, FVR has
unparalleled advantages but it still faces some challenges, es-
pecially during image capture [64], [72], [45], which contains
uneven illumination, light scattering in finger tissue, inappro-
priate ambient temperature, image displacement, presentation
attacks, shading, etc. All of the aforementioned challenges
have varying degrees of impact on the performance of FVR.
To overcome these challenges, [26], [29], [45], [56], [63],
[64], [66], [67] try to propose solutions from different aspects.
However, these technical difficulties have not been completely
solved, and they will remain the focus of FVR in the future.

Besides, FVR also has some potential directions. For in-
stance, FVR generally needs to be implemented on lightweight
portable mobile terminals. However, most of the deep neural
networks are not suitable for this kind of device. Therefore,
DL-based FVR faces some difficulties in practice. Knowledge
distillation [73] can be utilized to overcome this challenge.
Knowledge distillation can greatly condense complicated net-
works by teaching a small student model from a large model.
This technology can greatly improve the application ability of
FVR in reality.

Furthermore, one of the conveniences of FVR is that even if
one finger is in an accident, the other fingers can still be used
for identification. But registering ten fingers simultaneously in
an identification system is a hassle for users. Therefore, it is
necessary to explore whether the finger veins of the ten fingers
of the same individual are similar in future FVR research work.

If there is some connections between different finger veins of
the same person and they can be identified by FVR systems,
it will take the convenience of FVR systems to a new level.
Although [41], [49] focus on this problem, they still have some
limitations. [41] considers the connection between the veins
of different fingers of the same person is too weak to perform
the recognition. [49] utilizes the triplet loss with hard triplet
online mining for FVR. This strategy successfully verified that
symmetric fingers (the same sort of finger but from opposite
hands in the same individual) have enough similarities to be
recognized. The similarities of other asymmetric fingers is also
proved in [49], but the proposed recognition system is still
unable to effectively identify these asymmetric finger veins.
Therefore, related work can still be further explored in the
future.

VII. CONCLUSION AND FUTURE WORK

In this brief survey, we summarize the DL technology for
FVR. First, we introduce the base information of widely used
public datasets and some popular CNN structures. After that,
we summarize 46 related research literature of FVR based
on DL from 2017 to 2021, and classify them according to
the tasks of neural networks, which includes classification,
feature extraction, image enhancement, image segmentation,
encryption. Finally, we discuss the current challenges and
development directions of FVR. From this review, it can
be found that the tasks of neural networks are diverse in
FVR, and compared to other biometric recognition systems,
FVR has unique advantages. In the future, we will investigate
more literature and DL techniques in FVR to propose a
comprehensive review.
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