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Abstract

Current mainstream deep learning techniques exhibit an over-reliance on extensive
training data and a lack of adaptability to the dynamic world, marking a considerable dis-
parity from human intelligence. To bridge this gap, Few-Shot Class-Incremental Learn-
ing (FSCIL) has emerged, focusing on continuous learning of new categories with limited
samples without forgetting old knowledge. Existing FSCIL studies typically use a single
model to learn knowledge across all sessions, inevitably leading to the stability-plasticity
dilemma. Unlike machines, humans store varied knowledge in different cerebral cortices.
Inspired by this characteristic, our paper aims to develop a method that learns indepen-
dent models for each session. It can inherently prevent catastrophic forgetting. Dur-
ing the testing stage, our method integrates Uncertainty Quantification (UQ) for model
deployment. Our method provides a fresh viewpoint for FSCIL and demonstrates the
state-of-the-art performance on CIFAR-100 and mini-ImageNet datasets.

1 Introduction

Deep learning has achieved significant milestones in numerous large-scale computer vision
tasks. These approaches generally invoke learning the mapping from samples to correspond-
ing labels using extensive datasets. However, a trained deep neural network usually lacks
the ability to generalize to new categories. Recently, Class Incremental Learning (CIL) has
received widespread attention since it enables trained models to be extended to new cate-
gories [3, 8]. CIL strives to allow models to continually learn different categories from data
streams instead of a fixed dataset while preserving the capability to recognize previously en-
countered categories. Most CIL studies focus on letting models learn incrementally when the
new class samples are sufficient. However, acquiring samples from new categories proves
challenging and resource-intensive in many piratical scenarios [15]. To tackle the challenge
posed by the scarcity of samples from new categories, a task of more challenging and prac-
tical significance is denoted as FSCIL. In contrast to CIL, FSCIL must incrementally learn
in situations with extremely limited labeled samples for new categories. The current FS-
CIL studies predominantly adhere to the traditional CIL paradigm, wherein a single model
assimilates all data throughout the incremental process, sharing identical model parameters
and decision boundaries. This learning paradigm presents significant challenges in conserv-
ing the model’s old memory and deviates from the manner in which the human brain stores
memories. As shown in Fig. 1, acquiring knowledge of new categories inevitably alters
parameters trained on old ones, causing catastrophic forgetting.
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Figure 1: Comparing ordinary incremental learning method to parameter-isolation method.
0! represents the model parameter on session . (a) Model parameter changes trigger catas-
trophic forgetting (b) The model for each session learns the data independently and saves the
parameters separately.

In contrast to this memory-burdened and forgettable learning paradigm, the human brain
distributes learned knowledge in different areas of the cerebral cortex [6, 14]. After exposure
to a given task, a human can promptly associate it with the corresponding area of the cerebral
cortex. This adaptive learning method is particularly well-suited for FSCIL because it can
store memories separately. However, from the standpoint of biological and cognitive science,
the challenges faced by deep neural networks in emulating the human cerebral cortex within
FSCIL are principally manifested in the following two aspects. (I) How can the model
imitate the partitioned memory storage? The unavailability of the session label results in
the necessity for the model to store the knowledge acquired across all sessions entirely within
a unified memory area that cannot be segregated. (II) How can one establish a mapping
Jrom task to memory? The session label during the testing process is also missing in the
FSCIL. This implies that directly mapping the relevant areas of the cerebral cortex, as the
human brain naturally does for a given task, is tricky. This paper is dedicated to bridging
the gap between the learning process of FSCIL and the way that the human cerebral cortex
stores memories by addressing the aforementioned challenges.

To tackle the first challenge, we adopt a parameter-isolation strategy for incremental
training, training distinct classification models for each session. The conventional FSCIL
poses a risk of catastrophic forgetting because all sessions share the same model parameters.
In our parameter-isolation strategy for FSCIL, each model exclusively stores knowledge ac-
quired in its respective session, as shown in Fig. 1 (b). This approach effectively retains
knowledge of each session and prevents catastrophic forgetting. To address the second chal-
lenge, we predict the session label of the samples by UQ. Test samples are fed into models
on each session individually to obtain classification results along with corresponding uncer-
tainty values. After, the appropriate classification result is selected based on the uncertainty
value. UQ enables the model to express the level of uncertainty associated with a given sam-
ple. It normally provides low uncertainty for for the learned categories and high uncertainty
for never-encountered categories.

We conduct comprehensive comparative and ablation experiments on multiple bench-
mark datasets to validate the effectiveness. The contribution is summarized as follows:


Citation
Citation
{Kudithipudi, Aguilar-Simon, Babb, Bazhenov, Blackiston, Bongard, Brna, Chakravarthiprotect unhbox voidb@x protect penalty @M  {}Raja, Cheney, Clune, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022

Citation
Citation
{Zhang, Liu, Silven, Pietik{ä}inen, and Hu} 2023


AUTHOR(S): BMVC AUTHOR GUIDELINES 3

* We introduce a novel perspective for FSCIL, mirroring the memory storage mecha-
nism of the human cerebral cortex. Our work pioneers the use of a parameter-isolation
method in FSCIL. This innovative approach addresses the challenges and achieves
state-of-the-art performance on benchmark datasets.

* We use information entropy to compute the uncertainty of the samples in the testing
stage, which enables the prediction of sample session labels.

* We employ a novel data augmentation strategy to generate virtual prototypes. This
strategy significantly enhances the feature extraction capability of the backbone.

2 Related Word

FSCIL represents a more challenging task compared to class-incremental learning. FSCIL
aims to continuously acquire knowledge of new categories with a limited amount of labeled
data while simultaneously preventing the inadvertent forgetting of previously learned cate-
gories [13]. The problem setting of FSCIL is firstly proposed in TOPIC [11]. It utilizes the
Neural Gas (NG) network to stabilize the topological manifold features between new and
old categories. CEC [13] uses a graph neural network to update the classifier parameters in
each incremental session based on the global knowledge of previous sessions. Simultane-
ously, it creates pseudo-incremental scenarios to optimize the graph neural network during
base training. The pseudo-incremental approach has been used in many studies [15, 16]. Un-
like previous approaches that only consider the performance of the current session, [15] uses
a method that enhances the scalability of the incremental model by compacting the embed-
ding space through the inversion of virtual prototypes. In this paper, we crop and mix images
of different categories to form images of virtual categories and generate virtual prototypes
based on semantic information similar to real categories.

3 Problem Setting

FSCIL aims to incrementally learn new categories in limited labeled samples while retain-
ing old knowledge. In FSCIL, the complete training dataset D;,4i, can be represented as
{Dt(zm,l)t(rltzin,Dt(fa)m, e ,Dt(r]\gn}, whever Dt(zm represents the training data of ¢-th session,

and N is the total number of sessions. The samples and their labels from different sessions

do not overlap. Dt(gzm is the base training dataset, which contains abundant training samples
from different categories. Dg)ain(l < i < N) is the incremental training dataset, which con-
tains only a few samples. It contains N classes, and each class contains K samples, known
as N-way K-shot. During the training in the 7-th session, the model only interacts with the
samples and labels from the current session Dt(iim. During the testing stage of the i-session,

the evaluation involves all the categories the model has already learned.

4 Methodology

In this paper, we use a CutMix-based data augmentation approach for base session training to
generate virtual prototypes to train more robust feature extractors. For incremental sessions,
we train separate classification models for each session to avoid the appearance of forgetting.


Citation
Citation
{Zhang, Song, Lin, Zheng, Pan, and Xu} 2021

Citation
Citation
{Tao, Hong, Chang, Dong, Wei, and Gong} 2020

Citation
Citation
{Zhang, Song, Lin, Zheng, Pan, and Xu} 2021

Citation
Citation
{Zhou, Wang, Ye, Ma, Pu, and Zhan} 2022

Citation
Citation
{Zhu, Cao, Zhai, Cheng, and Zha} 2021

Citation
Citation
{Zhou, Wang, Ye, Ma, Pu, and Zhan} 2022


4 AUTHOR(S): BMVC AUTHOR GUIDELINES

This is the first parameter isolation method in FSCIL. To prevent the limited training data
from being overfitted during incremental learning, we use a branch training strategy to freeze
most of the parameters of the base model. In the testing stage, we employ UQ on fed samples
by calculating the information entropy derived from the model output to assist the sample in
selecting the appropriate classification model. This process enables the samples to choose the
proper classification results from multiple models. The overall framework of our proposed
method is shown in Fig. 2.
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Figure 2: The overview of our proposed humankind memory-inspired FSCIL approach. (a)
The CutMix data augmentation method enhances the feature extractor’s performance by gen-
erating virtual prototypes. For session ¢, freeze the bulk Fy of the feature extractor, fine-tune
the tail F., and the classifier W’. (b) In the testing stage, the samples x are fed to a trained
series of models outputting classification results R (x) and uncertainty H’(x). The reliable
result is then selected based on the value of H'(x).

4.1 Generate virtual prototypes

FSCIL typically employs a metric learning approach based on the nearest neighbor concept
for the classification of samples. The feature vector is closest to the prototype of the class
to which the sample is predicted. However, as shown in Fig. 3 (a), if the proximity between
prototypes in the embedding space is excessively close, it results in an elevated error rate
during sample classification.

To enhance the separation between prototypes and create a sparser embedding space
that exclusively prototypes of genuine categories, [15] employs a method for generating
virtual prototypes. This method involves the insertion of generated virtual prototypes into
the embedding space. Drawing inspiration from [15], we use virtual prototype generation
in the training of the base session to enhance the feature extraction ability of the backbone.
Specifically, we employ the CutMix augmentation method to generate virtual samples using
samples from true categories and then extract the feature vectors from these virtual samples
to synthesize virtual prototypes. A detailed virtual prototype schematic in our method is
shown in Fig. 3 (¢). Eq. (1) shows the process of cropping and mixing image X onto image
X4, the method called CutMix [12].

x=MOxs+(1-M)oOxg, Me {0,171V (1)

Where X denotes the image with the virtual category resulting from the fusion of x4 and
xp, M is a binary mask designed to drop image information, ® represents the pixel-by-pixel
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Figure 3: Placement of virtual prototypes in embedding space. (a) The nearest neighbor-
based algorithm can encounter challenges in accurate recognition when prototypes of real
categories in close proximity within the embedding space. (b) Inserting the virtual prototypes
increases the separation between real prototypes and increases the sparsity of the embedding
space. (c) Procedure for virtual sample generation.

multiplication of the two images. In our work, we restrict the size of M to half the size of the
original image. This constraint is implemented to guarantee the comprehensive integration of
semantic features from both categories into the virtual class. The virtual samples generated
by the CutMix method eliminate non-pixel information, allowing the virtual prototypes to
closely align with the real categories in embedding space, further amplifying the separation
between real prototypes and enabling the feature extractor to extract more discriminative
features between classes.

4.2 Branch training in incremental sessions

Many FSCIL studies adopt a strategy of freezing the parameters of the feature extractor
following the training on the base class to suppress catastrophic forgetting for deep neural
networks in incremental stage [7, 13]. It effectively suppresses forgetting but limits the
feature extractor’s capacity to learn new categories. To facilitate the adaption of the model’s
parameters to the new class while preserving its feature extraction capabilities obtained on
the base categories, we partition the feature extractor into two parts, Fy and F.. F is the
main component of the network, and F, is the lesser layer at the tail end of the network. The
entire classification model M in session i consist of {Fy, F,, W'}, W' is the classifier of
session i. The feature vector p; extracted from the image x; by the feature extractor is shown
in Eq. (2). The feature extractor extracts all training samples of class k to generate feature
vectors and computes the mean to obtain the prototype p* for that class.

pi = Fe(Fy(xi)) 2

Where |C (k)| denotes the total number of training samples of class k. With sufficient data
in the base session, we train Fy, F(e), and WY In incremental sessions, the F,and W' (+ > 1)
undergo fine-tuning, and the parameters of Fip is frozen. FSCIL differs from conventional
CIL in that the new categories in FSCIL comprise only a limited amount of data, so adjusting
Fy during incremental training can result in severe overfitting to new categories. Hence, the
parameters of Fy are shared among all session models. This training strategy suppresses the
forgetting phenomenon, enabling the model to better adapt to new knowledge.
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4.3 Model selection based on uncertainty qualification

During FSCIL testing, without access to session labels, mapping samples to the correct
model poses a critical challenge. During testing stage, we have a feature extractor back-
bone Fy, a sequence of feature extractor tails {FOF!,...,F"} and a sequence of classifier
{WO W! ... 'W"}. Choosing the right one from a range of models for a test sample is crit-
ical. UQ can measure the model’s certainty level with fed samples, producing uncertainty
values for classification. In this study, we use information entropy to measure the uncertainty
of the fed samples. The information entropy is calculated as shown in Eq. (3).

(<

Zp )log p(0) 3)

Where H' (x) denotes the information entropy of the model in session 7 for the fed sample
| denotes the total number of categories in session 7, p(0°) represents the probability
of class ¢ for fed sample x. During the testing stage, the samples are fed into all session
models. Simultaneously, each model computes the uncertainty of the fed samples based on
the Eq. (3). p(o°) is obtained by mapping the output of the neural network to a probability.
Finally, the model with the minimum uncertainty is chosen as the classification model for
the given sample, and the predicted class from that model is accepted.

4.3.1 Fine tune with real categories

The generation of virtual samples enhances the feature extraction capability of the back-
bone. However, it concurrently introduces non-existent categories to the classification sys-
tem. These non-existent categories have an impact on the uncertainty values calculated by
the model for the sample. To enhance the trustworthiness of UQ results, we employ real
categories to fine-tune the model. Following the training of a robust backbone with samples
containing virtual categories, we adjust the number of neurons in the tail of the fully con-
nected layer to match the count of true categories for the present session. Subsequently, we
fine-tune the model using training samples exclusively composed of true categories.

4.3.2 Categories imbalance in uncertainty qualification

To assess sample uncertainty across different classification systems, ensuring uniformity in
their target categories amount is essential. This standardization is crucial to render the re-
sults of the UQ meaningful and comparable for analysis. However, in FSCIL’s setting, base
sessions comprise many categories, while incremental sessions feature fewer. To address the
class imbalance problem for UQ in base and incremental sessions, we further refine the UQ
of the base session model. To maintain consistency in target categories between the base
session model and incremental session models during UQ, we partition the probabilities
generated by the base session model to Ny, sub-results, Ny,; as shown in Eq. 4.

1

[
|C°) and |C!| represent the number of categories in the base session and the incremental

session, respectively. The output of the base session model has a total of Ny,;, sub-results,

where each sub-results contains the probability of |C!| categories. We quantify the uncer-
tainty for each sub-result and select the smallest of them as the UQ result for the whole base

Nou» = Il =1C/|(1<i,j<n) O]
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session model. In detail, during the testing stage, each sample x; is fed into the models on
all sessions, resulting in a set of uncertainty values as shown in Eq. (5).

U:{HO(Xi)le(Xi)v"'7H”(Xi)} &)

Nonetheless, to ensure uniform participation of the target categories in UQ, the Ny, sub-

results of the base session model are involved in the UQ, rather than H°(x;). The sub-results

scheme ensures that the category number of the base session model aligns with |C|. Hence,
the set of uncertainties obtained into all models is expressed as shown in Eq. (6).

U={H{(x;),"-- Hy (x;),H"(x;),-- ,H"(x;)} (6)

Where Upyse = {H(x;), - ’Hl(\)’m (xi)} denotes the set of all sub-results from the base
session model. The minimum value in Uy, as the uncertainty value of the base session
model participates in the UQ containing all session models. This sub-results partitioning
strategy for the base session model effectively tackles the category imbalance between the
base classes and the incremental classes. This is achieved by aligning the categories in the
sub-results of the base session with the incremental class.

5 Experiments

5.1 Dataset

CIFAR-100 contains 100 classes with 600 32 x 32 RGB images per class, of which 500 are
used for training and 100 for testing, and the entire dataset has 600,000 images. 60 classes
are used as base classes, 40 classes are used as incremental classes, and there are eight
sessions in the incremental stage. The data in each incremental session appears as the 5-way
5-shot. mini-ImageNet is a subset of ImageNet that contains a total of 100 classes, each
containing 600 84 x 84 RGB images. 60 classes are used as base classes, and 40 classes are
used as incremental classes. The 40 classes are evenly distributed into eight sessions, with
five classes per session. The data in each incremental session appears as the 5-way 5-shot.

5.2 Implementation Details

Model Architecture Many FSCIL studies use ResNet [4] as the backbone for classifica-
tion [7, 13, 17]. We employ ResNet-18 as the backbone network to validate the performance
of our proposed method on the benchmark datasets. We follow the setting of [13, 17] for
CIFAR-100 and mini-ImageNet, and we use randomly initialized model parameters. The en-
tire feature extraction section of ResNet-18 is partitioned into four blocks, with each block
consisting of three convolution layers. In our branch training strategy, the first three blocks
are Fy, where the parameters are frozen after training on the base session. The last block in
the tail is F,, and it continuously updates the parameters during incremental sessions.

Baseline We use these recent methods as baselines in comparative experiments: iCaRL [9],
EEIL [1], LUCIR [5], TOPIC [11], CEC [13], F2M [10], Entropy-reg [7], MetaFSCIL [2],
GKEAL [17]. The performance of these baselines is mostly sourced from [17] for fair and
consistent comparisons. In ablation experiments, the absence of branch training implies that
only the classifier undergoes fine-tuning during the incremental process while the parameters
of the feature extractor remain frozen.
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Training details Our experiment is implemented using the Python version of PyTorch.
The optimizer is SGD, with the learning rate set to 0.1 for the base session and 0.05 for
incremental sessions. Momentum in SGD is set to 0.9. For CIFAR-100, The training epochs
are 200 in the base session and 20 in incremental sessions. For mini-ImageNet, the training
epochs are 300 in the base session and 30 in incremental sessions.

5.3 Comparison with the state-of-the-art methods

To validate the state-of-the-art performance of our method, we conduct comparative exper-
iments with contemporary approaches on two benchmark datasets: CIFAR-100 and mini-
ImageNet. The comparative performance of our method compared to other FSCIL methods
is shown in Fig. 4. And the detailed performance for CIFAR-100 is shown in Tab. 1.

CIFAROO minilmageNet

80

Accuracy(%)

W A O @ N
S S o o o

N
=3

Session Session
-8~ Ours iCaRL -4+ EEIL -¥- LUCIR =¥ Entropy-reg
-©- CEC F2M -~ GKEAL -+ TOPIC MetaFSCIL

Figure 4: Average accuracy on each session of two benchmark datasets: CIFAR-100, mini-
ImageNet.

Table 1: The accuracy of each session among the compared methods on CIFAR-100.

Accuracy in each session (%)

Method 0 i 3 3 ) 5 6 7 g AA
iCaRL [9] 6410 5328 4169 3413 2793 2506 2041 1548 1373 32.86
EEIL [1] 64.10 5311 4371 3515 2896 2498 2101 1726 1585 33.79
LUCIR [5] 6410 5305 4396 3697 3161 2673 2123 1678 1354 3421
TOPIC[11] 6410 5588 47.07 4516 4011 3638 3396 3155 2037 42.62
CEC [13] 7307 6888 6526 6119 5809 5557 5322 5134 49.14 5952
F2M [10] 7145 6810 6443 6080 5776 5526 53.53 5157 4935 59.13

MetaFSCIL [2] 7450 70.10 66.84 62.77 59.48 56.52 5436 52.56 4947 60.73
Entropy-reg [7] 7440 70.20 66.54 62.51 59.71 56.58 5452 5239 50.14 60.77
GKEAL [17] 74.01 70.45 67.01 63.08 60.01 5730 5550 5339 5140 61.35
Ours 8530 7994 7416 69.19 6540 62.09 5940 57.16 54.73 67.44

Based on the experimental results, our approach attains satisfactory performance for both
CIFAR-100 and mini-ImageNet, demonstrating excellent in base session and incremental
sessions. In CIFAR-100, our method outperforms GKEAL [17] by 3.73% in the final ses-
sion, with an average accuracy improvement of 6.09%. The experimental results unequiv-
ocally demonstrate that our method outperforms other state-of-the-art methods for FSCIL
datasets. Our proposed parameter-isolation approach in FSCIL effectively mitigates the is-
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sue of catastrophic forgetting. Simultaneously, the experimental results substantiate that the
UQ technique can construct a mapping from samples to models. This learning method offers
a fresh perspective for the FSCIL field.

5.4 Ablation Study

To assess the efficacy of our methods, we conduct ablation experiments on CIFAR-100. The
detailed results are provided in Tab. 2. Post application of the virtual prototype generation
method, accuracy rose to 82.93%. This suggests the method effectively enhances backbone
feature extraction. However, deploying branch training with model selection yielded unsatis-
factory performance due to category imbalance in UQ. We address this with the SR strategy
during testing, resulting in AA increasing from 58.38% to 65.27%. This underscores the
importance of addressing category imbalance in UQ within the FSCIL domain. Further,
fine-tuning the model with real categories after virtual prototype enhancement increased AA
by 2.17%. In summary, our method raised the last session accuracy from 49.04% to 54.73%
and AA from 62.88 to 67.44. This indicates our method effectively resists forgetting and
generalizes to new classes.

Table 2: The comprehensive ablation experiment on CIFAR-100. For abbreviations, AA rep-
resents the average accuracy. CM represents the generation methods for virtual prototypes.
BR represents the branch training strategy. MS represents the model selection based on UQ
SR represents the sub-results of the classification model in the base session. FT represents
the fine-tuning for the the categories number of classifier.

Accuracy in each session (%)
0 1 2 3 4 5 6 7 8

80.92 75.86 69.81 6545 61.13 5739 5441 5199 49.04 62.88
8293 7635 7122 6632 61.88 5865 5571 5271 4937 63.90
8293 72.06 6445 59.03 5551 5149 49.08 4695 4398 5838
8293 77.60 7190 67.02 63.62 5992 5694 5473 51.79 6527
v o v 8530 7994 7416 69.19 6540 62.09 5940 57.16 5473 67.44

CM BR MS SR FT AA

ANENENEN

ENENEN

ANENEN
AN

6 Conclusion

In this paper, we propose a FSCIL method that emulates memory storage in the human
cerebral cortex. This is the first parameter isolation method in FSCIL. We train distinct
classification models for each session to uphold the performance of the entire classification
system on old categories. During the testing, we quantify the uncertainty of the samples
in deriving session label, facilitating the selection of the appropriate classification model.
By emulating the memory storage mechanism of the cerebral cortex, our approach renders
the learning process of FSCIL more aligned with the human learning style, offering a novel
perspective to the field of FSCIL. In the future, we aim to develop UQ methods that are better
suited for limited samples and meticulously consider detailed feature differences.
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