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ABSTRACT

Early diagnosis is beneficial for treating Colorectal Cancer (CRC)
and can improve its curability. The traditional methods of CRC
diagnosis generally rely on pathologists, but with the increasing
number of CRC patients, manual diagnosis has many shortcomings.
In recent years, Deep Learning (DL) has attracted wide attention in
various fields. It has higher precision in many complex tasks than
traditional machine learning techniques. In particular, DL is widely
used in medical image classification, including histopathological
images of colorectal cancer. This review summarizes multiple pa-
pers on DL for histopathological CRC image classification from
2014 to 2022. These papers discuss the task of deep neural networks
and present their challenges and potential development directions
for histopathological colorectal cancer image classification.
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1 INTRODUCTION

CRC is a rapidly spreading cancer globally and ranks as the second
and third most common cancer among males and females, respec-
tively [3]. The rising incidence and mortality rates, as shown in Fig.
1[14], are a cause for concern. Early diagnosis is essential for effec-
tive CRC treatment and improved chances of a cure [32][13][14].
Traditional CRC diagnosis relies on pathologists who manually
examine processed histopathological images on slides through mi-
croscopes [26]. However, as the number of CRC cases increases,
this method faces several challenges. Firstly, manual diagnosis can
be influenced by subjective factors [21], impacting the accuracy
of CRC analysis. Pathologists, despite their experience, may have
varying observations of colorectal tissue, leading to inconsistent
diagnoses. Secondly, there is a scarcity of qualified pathologists
due to rigorous training requirements [35]. Manual CRC diagnosis
is time-consuming and inconvenient. Additionally, the increasing
CRC incidence and the limited number of pathologists have led to
excessive workloads, potentially affecting diagnostic accuracy [38].

With the development of computer vision technology in recent
years, automated analysis by computer vision has started to assist
pathologists in improving diagnostic accuracy in a consistent and
objective manner [16]. Meanwhile, DL has gained widespread at-
tention in various fields due to its high accuracy in complex tasks
compared to traditional machine learning technology [4]. Particu-
larly in medical image classification, DL has been widely applied
[38]. For instance, DL has been applied to breast cancer and glau-
coma diagnosis [16]. Paper [33] proposes a Convolutional Neural
Network (CNN)-based method to distinguish between normal and
abnormal blood cell images for the treatment of patients with acute
leukemia. Deep learning-based methods can improve the efficiency
and accuracy of diagnosis and obtain objective results [15] by reduc-
ing errors caused by subjective factors of the pathologists. Many
studies have demonstrated the applicability of deep learning in
actual medical scenarios [6].

However, the number of existing reviews on histopathological
image analysis of CRC is limited and often lacks comprehensive
content. For instance, Work [3] aims to review Artificial Intelli-
gence (AI) in CRC image classification but lacks a thorough analysis
of deep learning and dataset introductions. Similarly, paper [1]
briefly introduces DL-based image classification for colorectal le-
sions without delving into relevant datasets. Work [6] focuses
on DL models for colon cancer region classification in sparsely
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Figure 1: Global temporal patterns of colorectal cancer burden, 1990-2019

annotated histopathological data but lacks a well-structured organi-
zation. In work [22], colon cancer is divided into five classes, with
a focus on deep-learning tasks, but it doesn’t provide a detailed
analysis of the network performances mentioned. In [32], gland
segmentation and tumor classification in CRC are briefly mentioned,
but the processes and networks used for histopathological image
analysis of CRC are not discussed. In contrast, our survey provides
a comprehensive analysis of neural network tasks, shedding new
light on related research. We also introduce commonly used public
datasets and offer a detailed description of the classification task.
Additionally, we present a summary table summarizing relevant
works.

To illustrate the recent trend and potential direction of
histopathological image classification of CRC based on DL, we
conduct this survey. Our study provides a summary of 42 academic
papers published between 2014 and 2022, which collectively encom-
pass a significant portion of the literature about the classification
task for CRC. These papers are collected from popular academic
datasets or search engines, which mainly include IEEE, Springer, El-
sevier, and Google Scholar. We use "Colorectal Cancer Histopathol-
ogy Image” AND (“analysis” OR ”classification” OR “identification”
OR ”detection” OR “feature Extraction”) AND ("Deep Learning” OR
"Deep Neural Network” OR ”"Convolutional neural network” OR
”Artificial Neural Networks”) as the searching keywords. The struc-
ture of this paper is as follows: In Section 2, we briefly introduce
the commonly used public datasets. In Section 3, We summarized
the papers according to the classification task. In Section 4, the
challenges and potential directions of CRC are talked about. Fi-
nally, in Section 5, the conclusion and future work of this paper is
provided.

2 DATASETS

In this section, we introduce the commonly used public datasets at
first. Then, the above-mentioned datasets are described. Datasets
are critical in developing histopathological image classification of
CRC technology. The image data capacity and quality in the datasets
can directly affect the performance of the DL model. Through the
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investigation of relevant papers, the most widely used datasets are
the Warwick-QU datasets [42][30](The Warwick-QU dataset also
called GLAS challenge dataset [40] at some point), the Kather CRC
histology datasets (KCHD) [39], the Cancer Genome Atlas (TCGA)
dataset [29], and the Colorectal Histology-Image Dataset (COHID)
[5]. The base information of these datasets is provided in Table 1.

2.1 Warwick-QU Datasets

The Warwick-QU dataset, about the field of colorectal cancer, was
collected by a team of pathologists from the University Hospitals
Coventry and Warwickshire in the United Kingdom. This dataset,
which will be used in the GLAS Challenge, comprises 165 BMP
format images with a resolution of 20 X, obtained through a Zeiss
MIRAX MIDI scanner with a pixel density of 0.62005 ym/pixel. The
dataset is split into a training set, consisting of 37 benign and 48
malignant images, and a testing set, containing 37 benign and 43
malignant images.

2.2 Kather CRC Histology Datasets

KCHD comprise textures from human colorectal cancer histology
images. It consists of two archives. The first, "Kathertexture2016im-
agetiles5000.zip” contains 5000 histology images, each at a resolu-
tion of 150 X 150 pixels (74 X 74 ym), representing eight distinct
tissue types. This dataset is balanced with an equal number of
images in each class. The second archive, “Kathertexture2016la
rgerimages10.zip,” contains ten larger histology images, each mea-
suring 5000 X 5000 pixels, displaying a mix of multiple tissue types.
All images in both archives are RGB with a pixel size of 0.495
pm, scanned at a 20 X magnification using an Aperio ScanScope.
It’s important to note that these histopathological specimens are
anonymized images of human colorectal adenocarcinomas (primary
tumors) preserved in formalin and embedded in paraffin.

2.3 TCGA Datasets

TCGA is a publicly accessible resource that offers extensive ge-
nomic and clinical information on various cancer types. Developed
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Table 1: The base information of CRC datasets. For short, Image Number are abbreviated as No..

Dataset No. Format Resolution
Warwick-QU datasets [40] 165 BMP 20x (0.62005 pm/pixel)
KCHD [39] 5000 TIFF 150x150

TCGA datasets [29] —_ BAM VCF TXT , etc —
COHID [5] 36500 JPEG 224%224

through a collaborative initiative between the National Cancer In-
stitute (NCI) and the National Human Genome Research Institute
(NHGRI), TCGA involves the participation of numerous research
institutions and investigators across the world. The dataset encom-
passes genomic data, including DNA sequencing, RNA expression,
DNA methylation, and proteomic data, alongside clinical data on
patient demographics, treatment history, and survival outcomes.
Multiple cancer types, such as breast, lung, colon, and prostate
cancers, are included in the TCGA dataset, which employs diverse
formats of data, such as BAM, VCF, and TXT formats, etc. The
distinct types of data are preserved in different formats.

2.4 The Colorectal Histology-Image Dataset

COHID aims to provide standardized, high-quality Hematoxylin &
Eosin (H&E) stained whole-slide images (WSIs) of colorectal tissues
for researchers and clinicians to develop and test algorithms for
automated detection, diagnosis, and grading of colorectal cancer.
The dataset comprises 160 H&E stained WSIs of colorectal tissue
specimens, acquired at 40x magnification and available in SVS and
TIFF formats. The images represent various disease stages and
grades, including both normal and cancerous tissues, and come
with corresponding clinical and pathological data, such as patient
age, gender, disease stage, and histological grade.

3 HISTOPATHOLOGICAL CRC IMAGE
CLASSIFICATION BASED ON DEEP
LEARNING

An overview of CRC histopathological diagnosis based on DL is
presented in this section. In this section, we provide a brief intro-
duction to deep learning-based CRC histopathological diagnosis.
Based on different classification methods, this section is divided into
two parts: non-end-to-end methods and end-to-end methods. Rep-
resentative methods are introduced in each part. Table 2 compares
their characteristics, advantages, and disadvantages.

3.1 Non-End-To-End

Non-end-to-end approaches generally contain several components
to make the prediction. In the CRC pathology image classification
task, non-end-to-end approaches usually consist of three steps. The
three steps are preprocessing, feature extraction, and classification.
The details are as follows.

Preprocessing. The quality of pathological images significantly
impacts subsequent research and analysis. Raw image data often
contains inherent noise, missing values, inconsistencies, and errors.
Image preprocessing, a crucial step in image analysis, involves op-
erations and transformations applied to images before use. It aims
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to remove irrelevant information, restore meaningful data, enhance
pathology-related features, and reduce data redundancy, ultimately
improving the reliability of processes like feature extraction, image
segmentation, classification, and recognition [2].

In the context of CRC histopathologic images, preprocessing
includes denoising, background removal, image enhancement, and
contrast adjustment. Paper [39] employs various enhanced tech-
niques, such as Random Translation, zooming, rotation modifica-
tions, and random horizontal flipping, to optimize runtime data.
These methods prevent model overfitting and enhance generaliza-
tion, resulting in exceptional performance.

Additionally, Paper [36] introduces an innovative image transla-
tion approach to address data imbalances in a dataset of colorectal
polyp histopathology images. This approach mitigates biases and
enhances analysis robustness, ultimately improving research out-
comes.

Feature extraction. Feature extraction is crucial in analyzing
CRC histopathologic images. CNNs, as demonstrated in Paper [34],
can automatically extract features from images. In this study, an
Artificial Neural Network (ANN) is used to classify eight classes
of CRC tissue image patches, with 532 multi-level pathological
histological features extracted using visual descriptors like local
binary patterns, wavelet transform, and Gabor filters.

Paper [10] introduces various feature extraction methods for nor-
malized CRC images, particularly useful for distinguishing between
epithelium and stroma in CRC histopathology images, as well as
for feature selection and analysis. Textural features, as detailed in
Paper [10], employ a perception-based approach to differentiate
between epithelium and stroma in CRC images. Additionally, Paper
[4] presents a novel method that combines sample entropy with
multiscale, multi-dimensional, and fuzzy strategies to quantify color
images. This approach involves quantification from windows of
different sizes and tolerance variations, aiming to define the similar-
ity of patterns between pixels. Furthermore, Paper [9] contributes
to the automatic classification of microscopic colonic images by
utilizing a 2-D wavelet transform for feature extraction and a neu-
ral network for classification, specifically categorizing images into
normal, cancerous, or adenomatous polyp classes.

Classification. Non-end-to-end classification involves several
components. For example, R-CNN entails training three modules:
CNN feature extraction, SVM classification, and border correction.
In paper [11], a technique for classifying colon cancer from immuno-
histochemical staining images is proposed. It employs three meth-
ods for extracting vital image features: gray-level co-occurrence
matrix, local binary pattern, and histogram-based features. Stack-
ing integration techniques create models for cancer classification,



ClIIS 2023, November 25-27, 2023, Tokyo, Japan

Input

Yule Wang et al.

Input
7= 7conv,64, /2 Blab.c|
pool, 12 a
pool, 127 - - !___,____ ‘ @
7  A-1[64,64.256] shortcut |
A-1[64,64,256) ) — —
ot —— %1 conv, a
B-1[64,64,256] %2
B-1[64,64,256] %2 —— 33 conv, b
—— —_ |
=:_ﬂ'2[123‘128-512_]_.“ [1x1conv, ¢
T — = —
3 —
B-2(128,128.512] || | %3 Y
x3 v
¥ —
(A-3[256,256.10 '_"-‘ c
T e -
A
[B-3[256,256.1024] || | *S -,
%5 ~ —— Alabe] |
— CA-41512.512.2048]), T
¢ A-4[512,512.2048 ) - — Lanortcut w.
— | B-4[512,512.2048] I %2
) ¥
| B-4[512,512,2048] | x2 Flatten 3x3conv, b || 1x1conve
¥
v
Global average pooling 2D Dropout(0.5) ‘ L1 conv, e |
¥ T
Fc &
[FcB ¥
a b d

Figure 2: (a) The original ResNet-50, (b) the proposed ResNet50-fla-drop, (c) building block B consists of three stacked layers
with a shortcut of identity mapping, (d) building block A consists of three stacked layers with a shortcut of linear projection

mapping.

including neural networks, SVMs, and logistic regression. An au-
tomated system for accurately classifying CRC tissue regions can
enhance diagnosis and reduce clinical workload. Tissue classifi-
cation is challenging due to complex morphological and textural
features in histopathological images.

In paper [34], an artificial neural network and SVM classify eight
classes of CRC tissue patches. Paper [9] uses 2-D wavelet trans-
forms and neural networks for colonic histopathological image clas-
sification. Parallelization across multiple GPUs offers advantages
in handling memory limitations with larger batch sizes. Work [7]
suggests using three GTX-1080 graph processing units for ResNet
model parallelization.

3.2 End-To-End

End-to-end learning assigns the task of feature extraction to the
model to do, directly input the raw data or some micro-preprocessed
data, and let the model conduct feature extraction by itself. By
reducing the manual preprocessing and subsequent processing,
the model can be made from the original input to the final output
as much as possible. It gives the model more space that can be
automatically adjusted according to the data and increases the
model’s overall fit. In the image domain, the CNN is a very typical
end-to-end architecture. In this section, we will mainly present
CNN as well as some innovative networks.

ResNet. ResNet is known for its efficient training process, dis-
playing significant performance improvements in both training and
generalization errors. It offers various depths, including ResNet-18,
ResNet-34, ResNet-50, ResNet-101, and ResNet-152. In the realm
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of target detection, Paper [41] conducts experiments with multiple
CNN architectures, including AlexNet, VGG, and ResNet, finding
that ResNet excels in patch-based classification.

At the heart of ResNet lies the structured residual block, which
employs skip connections to directly link the input to the weight
layer. This approach accelerates learning without increasing com-
putational complexity, as it involves a simple additive operation.
Consequently, papers [16][28][31][24][19], and [25] utilize a ResNet
model with 50 layers. Specifically, Paper [16] applies ResNet,
DenseNet, and Inception V3 models for classifying colorectal tis-
sues, with ResNet demonstrating exceptional performance in data
feature extraction. Paper [28] employs the ResNet-50 model for
classifying CRC histopathological images and enhances accuracy
through transfer learning and fine-tuning techniques.

In Paper [12], a DL approach based on the ResNet-18 architecture
is proposed for the classification of histopathological tissues and
images based on a pre-trained CNN.

Additionally, Paper [18] introduces a modified residual network,
ResNet-50-fla-drop(see Fig. 2 (a) ), which differs from ResNet-50
primarily in the layers near the output end. ResNet-50-fla-drop
omits global average pooling layers in favor of flat layers, preserving
more features for the subsequent 8-way fully connected layer (Fc-
8). It also incorporates a dropout rate (0.5 dropout rate) before
the fully connected layer to mitigate overfitting. Fig. 2(c) and Fig.
2 (d) show two types of building blocks—blocks A and B used in
ResNet. Comparative experiments between the original ResNet-50
and the modified ResNet-50-fla-drop reveal that ResNet-50-fla-drop
achieves superior classification accuracy.
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DenseNet. DenseNet continuously connects each layer to the
input of the next layer through the feature graph [16]. While
ResNet uses a similar technique, the greatest difference is that
ResNet has a structure that adds feature maps, whereas DenseNet
has a stacked structure. The structure can stack information from
the preceding layer and efficiently transfer it to the subsequent
layers, thus improving the vanishing gradient and strengthening
feature propagation and feature reuse without relearning the same
features, thereby reducing the number of parameters. Paper [21]
applies transfer learning from the CNN architecture. Moreover, it
modifies the structure of the CNN to extract features from images
and input them into famous machine learning methods: Naive
Bayes, Multilayer Perceptron, k-Nearest Neighbors, Random Forest,
and Support Vector Machine. This method combines 18 feature
extractors with six conventional classifiers for 108 supervised image
classification experiments. The best result of the experiment was
the DenseNet169 with Support Vector Machine. In paper [16] and
paper [25], the DenseNet-121 model is proposed. Its fully connected
layer is cut and replaced with a dense layer containing 1024 neurons
with a ReLU activation function and an output layer containing
eight neurons with a softmax activation function.

Inception. Inception V1 uses the Inception module to address
gradient vanishing and overfitting [16]. As network depth in-
creases, the number of parameters and computational demands
grow substantially. In order to address these challenges, Inception
V2 was introduced, offering solutions that reduce computational
costs through the implementation of three key modules. These
modules involve the replacement of 5 X 5 convolutions with two
3 X 3 convolution operations, the substitution of 3 X 3 convolu-
tions with 1 X 3 and 3 X 1 convolutions, and the widening of the
Inception module to overcome representational bottlenecks. While
Inception V3 shares architectural similarities with Inception V2,
notable modifications were implemented, such as replacing the
original 7 X 7 convolutions with three 3 X 3 convolutions, updating
the optimizer to RMSProp, and introducing batch normalization in
the final fully connected layer, along with label smoothing.

Paper [35] introduces an innovative Al approach based on weakly
labeled supervised deep learning for CRC diagnosis, marking the
first general clinical application in this context. This approach
utilizes the Inception V3 architecture with weight initialization
through transfer learning. Supervised learning of weak markers
enables the training of diverse datasets without precise object-level
labeling. Transfer learning, a highly effective and efficient DL tech-
nique for image classification, leverages previously acquired knowl-
edge from available images for medical image classification. This
study holds significant practical value in enhancing the accuracy
and efficiency of colorectal cancer diagnosis and treatment.

VGG. In the VGG models, the most widely used structure is the
VGG-16 structure. Paper [25] proposes a VGG-like model with 12
convolution layers and 2 fully connected layers, as well as a VGG-16
model with 13 convolutional layers and 3 fully connected layers.
The analysis of histological samples is critical for the early diag-
nosis of CRC. Conventional visual assessment is time-consuming
and highly unreliable due to the subjective nature of the evaluation.
On the other hand, automated analysis is extremely challenging
because of the variability in the architectural and coloring charac-
teristics of the histological images. In paper [5], a DL technique
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based on CNN is proposed to distinguish healthy tissue and benign
lesions.

AlexNet. AlexNet is a pre-trained convolution neural network.
Its architecture contains eight layers and classifies objects into
1000 classes. The input is a 227 X 227 pixel image with 32-bit
RGB color space. In paper [23], the last layer of the network is
improved, and the size of the original image is adjusted to facilitate
the classification of objects in the CRC datasets. Paper [25] cuts and
replaces the full-connection layer with a dense layer containing
1024 neurons with ReLU activation functions and an output layer
containing eight neurons with softmax activation functions. The
authors compare their approach with other networks in terms of
performance and report good results.

Other Networks. This section provides a brief overview of lesser-
known network architectures. For instance, MobileNet is a light-
weight network with only 3 million parameters, while the initial
space network employs separable convolution to significantly re-
duce computational complexity. In Paper [27], MobileNet demon-
strates superior performance and the highest average accuracy
among various classifiers.

In Paper [8], constraints pertaining to the training data for CRC
are effectively mitigated through the implementation of a condi-
tional sliding window algorithm. Notably, this algorithm exhibits
versatility by extending its applicability to the generation of diverse
histopathological data. The proposed CNN 7-5-7 architectural con-
figuration surpasses the performance of the original data model,
offering stable performance in distinguishing between benign and
malignant classes of CRC.

Furthermore, Paper [37] introduces a new Deep Convolutional
Neural Network (DCNN) based model for the segmentation and clas-
sification of CRC Immunohistochemistry (IHC) images. The DCNN
architecture comprises alternating convolutional and max-pooling
layers, followed by fully connected layers and a final classification
layer. These layers work in tandem to extract and combine relevant
image features from training samples.

The Growing Hierarchical Neural Networks (GHNN) proposed in
paper [20] proposedcan autonomously detect local features without
the need for advanced feature extraction techniques, and in addition,
its dynamic data-dependent adjustment of neuronal counting and
localization enhances generalization, providing transparent and
compact knowledge representation.

4 CHALLENGE AND POTENTIAL DIRECTION

A substantial volume of data is necessary for training a CNN in
order to avoid overfitting caused by small datasets with limited
variability. Inaccurate predictions of new data would result from
this overfitting.

Moreover, the accessibility of histopathological medical data
presents a formidable challenge, as obtaining such data without
the requisite ethical permissions remains a complex endeavor. This
ethical hurdle underscores the importance of adhering to ethical
guidelines in the acquisition of medical data, emphasizing the need
for stringent ethical review and compliance in research.
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Table 2: An overview of the characteristics, advantages, and disadvantages of an end-to-end and non-end-to-end approach

aspect Non-End-To-End Method End-To-End Method

Features Consists of preprocessing, feature extraction, Models extract features directly from raw or
classification stages. preprocessed data.

Advantages - Modular approach allows flexibility and specific - Streamlined process with potential for better
tuning at each stage. integration.
- Can address image quality issues through - Can learn hierarchical features directly from data.
preprocessing. - Often leads to high accuracy with deep models.
- Well-established techniques for complex image
features.

Disadvantages - Can be more complex and time-consuming due to - May require larger datasets and computational

multiple stages.

- Subject to challenges related to the consistency of

preprocessing.

- Potential for error accumulation at each stage.

resources.
- Limited transparency in feature extraction for
some models.

- Less interpretability compared to traditional
methods.

Table 3: The summary of representative methods. For short, reference, network, accuracy, precision, dice similarity index ,F1-
score value, average accuracy, class balanced accuracy, geometric average of recall, balanced accuracy, silhouette, Davis-Bouldin,
stability, 95%confidence interval, Matthews correlation coefficient, intersection over union, the surgical pathology files of the
Medical Center Manila Hospital, Netherlands Cancer Institute dataset, and Vancouver General Hospital dataset are abbreviated
as Ref, Net, Ac, Pre, Dice, F1, AvAc, CBA, MAVG, BAC, Sil, Dav, SD, 95%CI, MCC, IoU, MCMHD, NKI Dataset, and VGH Dataset.

Ref. Net Dataset Performance(%)
[5] CNN COHID Ac>96
[6] CNN KCHD Ac=96.68

Warwick-QU
[9] ANN MCMHD Ac=91.11
[11] ANN — Ac=88.5
[12] ResNet-18 KCHD Ac=88.5
[13] DenseNet121 DigestPath Ac=97.07+£1.56 Dice=82.74+1.77 F1=82.79+1.79
[14] DenseNet TCGA Ac=97.34
[17] MobileNet KCHD AvAc=91.52 CBA=0.8898 MAv(G=90.50
[18] ResNet-50-fla-drop KCHD Ac=94.4
[19] ResNet-50 KCHD BAC=850.6 Sil=0.37+0.02 Dav=1.41+0.08
[21] DenseNet169 KCHD Ac=92.083 F1=92.17
[23] AlexNet Histo_Image-357 AcAc=89.53 SD=0.28 95%CI=(89.10,90.59)
[24] ResNet-50 Colorectal Data Ac=95.7 Pre=86.8 Recall=92.2 F1=838

KVASIR Dataset
[27] MobileNet CRC Extended CRC AvAc=92.78
[28] ResNet-50 KCHD Ac=97.7
[34] ANN KCHD Ac=95.32+2.16
[35] Inception-V3 TCGA Ac=97.98
NCT-CRC-HE-100K Ac=96.07

[37] DCNN NKI Dataset Ac=85 MCC=86 F1=85

VGH Dataset
[38] CN NKI Dataset Ac=90.34 F1=90.07

VGH Dataset Ac=94.30 F1=93.66
[39] CCT KCHD Ac=94.75 Pre=94.8 Recall=94.75 F1=94.74
[40] CNN TCGA Ac=94.6
[42] CNN Warwick-QU Ac=389.62 Pre=94.23 F1=90.46 IoU=82.58
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In the context of classification tasks, data imbalance denotes a cir-
cumstance where there exists a significant discrepancy in the num-
ber of instances between the minority class (comprising fewer ob-
servations) and the majority class (comprising more observations).
This imbalance poses a substantial impediment to conventional
machine learning algorithms, often leading to skewed predictive
outcomes.

Similarly, when examining the dataset of colorectal histopatho-
logical images, one observes a notable imbalance in the distribution
of data. These images exhibit a spectrum of complexities, ranging
from diverse structural patterns and heterogeneous cellular compo-
sitions to variability, damage, and substantial variations in scale and
resolution. These multifaceted characteristics collectively render
the classification of such images an intricate and challenging task,
necessitating advanced techniques and model adaptation to address
their intricate nature effectively.

5 CONCLUSION

This succinct survey is dedicated to the exploration of DL technol-
ogy’s applications in the classification of histopathological images
of CRC. Our study commences with an in-depth investigation of
the publicly available datasets commonly utilized in this domain.
Following this, we conduct an analysis of the pertinent literature,
encompassing both non-end-to-end and end-to-end classification
methodologies. In addition to this, we propose potential avenues for
addressing existing challenges and advancing the state of research
in this field.

The successful integration of deep neural networks in the realm
of CRC histopathological image classification critically depends on
the availability of more comprehensive and realistic datasets, as
well as the development of effective solutions to mitigate issues
related to data imbalance.

For the reader’s convenience, we have thoughtfully included a
comprehensive summary table Table 3) that provides swift access
to crucial information pertaining to each reviewed paper. This re-
view effectively underscores the notable advantages of DL-based
approaches in the context of histopathological image classifica-
tion for CRC, surpassing traditional manual diagnostic techniques.
Looking ahead, our future plans include an extensive exploration
of additional literature and the exploration of novel DL techniques
in the context of CRC, with the aim of providing a comprehensive
and up-to-date review of this evolving field.
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